SUMMER 2025 READING GROUP ON ERGODIC THEORY

EXERCISE SHEET 2 (SAMY LAHLOU): CRASH COURSE ON MEASURE THEORY, PART II

Throughout, let (X, μ) be a measure space.

Exercise 1. Continuous maps are Borel. HINT: Define a σ -algebra containing open sets in the codomain.

Exercise 2. In separable metric spaces, pointwise limits of μ -measurable functions are μ -measurable, i.e., if (f_n) is a sequence of μ -measurable maps $f_n : X \to Y$ from a measure space (X, μ) to a separable space Y, and $f := \lim_n f_n$ (pointwise), then $f : X \to Y$ is μ -measurable.

HINT: Let $\mathcal{C} := \{B \in \mathcal{B}(Y) : f^{-1}(B) \in \text{Meas}_{\mu}\}$. Show that \mathcal{C} is a σ -algebra containing all open set in Y, so $\mathcal{C} = \mathcal{B}(Y)$, as desired. For each $U \subseteq Y$ open, use separability to write $U = \bigcup_{n \in \mathbb{N}} B_n$, where each B_n is a ball whose closure is contained in U, and show that $f^{-1}(U) \in \text{Meas}_{\mu}$.

Exercise 3. If $f_1, f_2 : (X, \mu) \to \mathbb{R}$ are μ -measurable and $g : \mathbb{R}^2 \to \mathbb{R}$ is Borel, then $g(f_1, f_2) : X \to \mathbb{R}$ is also μ -measurable. In particular, $f_1 + f_2$ and $f_1 \cdot f_2$ are μ -measurable.

Exercise 4. If (f_n) is a sequence of μ -measurable functions $f_n : X \to \overline{\mathbb{R}}$, then $\sup_n f_n$, $\inf_n f_n$, $\limsup_n f_n$, and $\liminf_n f_n$ are also μ -measurable.

Exercise 5. Let $f, g \in L^p(X, \mu)$. If $f \leq g$, then $||f||_p \leq ||g||_p$.

Exercise 6. For any $f, g \in L^1(X, \mu)$ and $a, b \in \mathbb{R}$, we have $\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu$. HINT: Simple $\rightsquigarrow_{MCT} L^+ \rightsquigarrow L^1$.

Exercise 7. Let $f, g \in L^1(X, \mu)$. If $f = g \mu$ -a.e., then $\int f d\mu = \int g d\mu$. HINT: Consider $\int (f - g) d\mu$.

Date: May 12, 2025.