SUMMER 2025 READING GROUP ON ERGODIC THEORY EXERCISE SHEET 8 (ZHAOSHEN ZHAI): CORRESPONDENCE PRINCIPLES; THE FINITE-INFINITE BRIDGE; BABY STEPS TOWARDS THE STRUCTURE THEOREM. The first three exercises explore further correspondences between finite Ramsey theory, infinite Ramsey theory, and dynamical systems; you don't need to do all of them. The next few exercises are general lemmas used to study the structure of weak mixing and compact systems. Throughout, we let (X, \mathcal{B}, μ, T) be an invertible measure-preserving dynamical system, and recall that a topological dynamical system is a pair (X, T) consisting of a compact metrizable space X and a homeomorphism $T: X \to X$. The invertibility conditions are not necessary, but are here for convenience. **Exercise 1.** Show that the following are equivalent. **Theorem** (Simple recurrence in open covers). Let $(U_{\alpha})_{\alpha}$ be an open cover of a topological dynamical system (X,T). There exists α such that $U_{\alpha} \cap T^{-n}U_{\alpha} \neq \emptyset$ for infinitely many $n \in \mathbb{N}$. **Theorem** (Infinite pigeonhole-principle). For any $c \ge 1$, any c-colouring of \mathbb{Z} always contains a colour class with infinitely-many elements. **Theorem** (Finite pigeonhole-principle). For any $c, k \ge 1$, there exists N(c, k) such that if $n \ge N(c, k)$ and we colour $\{1, \ldots, n\}$ by c colours, then there is a colour class of at least k elements. Exercise 2. Show that the following are equivalent. **Theorem** (Multiple recurrence in open covers). Let $(U_{\alpha})_{\alpha}$ be an open cover of a topological dynamical system (X,T). There exists α such that for each $k \geq 1$, we have $\bigcap_{i < k} T^{-in}U_{\alpha} \neq \emptyset$ for some $n \in \mathbb{N}$. **Theorem** (Infinitary van der Waerden). For any $c \geq 1$, any c-colouring of \mathbb{Z} always contains a colour with arbitrarily long arithmetic progressions. **Theorem** (Finitary van der Waerden). For any $c, k \ge 1$, there exists N(c, k) such that if $n \ge N(c, k)$ and we colour $\{1, \ldots, n\}$ with c colours, then there is a monochromatic k-term arithmetic progression. **Exercise 3.** Show that the following are equivalent. **Theorem** (Furstenberg's multiple recurrence; v1). For any $k \geq 1$ and any set $A \in \mathcal{B}$ with positive measure, there exists $n \geq 1$ such that $\mu(\bigcap_{i < k} T^{-in} A) > 0$. **Theorem** (Furstenberg's multiple recurrence; v2). For any $k \geq 1$ and any set $A \in \mathcal{B}$ with positive measure, we have $\liminf_{N \to \infty} \frac{1}{N} \sum_{n < N} \mu(\bigcap_{i < k} T^{-in} A) > 0$ **Theorem** (Furstenberg's multiple recurrence; v3). For any $k \ge 1$ and any $f \in L^{\infty}(X, \mu)$ with $f \ge 0$ and $\int f d\mu > 0$, we have $\liminf_{N \to \infty} \frac{1}{N} \sum_{n < N} \int \prod_{i < k} T^{-in} f d\mu > 0$. **Theorem** (Infinitary Szemerédi). Any subset of \mathbb{Z} with positive upper density contains arbitrarily long arithmetic progressions. **Theorem** (Finitary Szemerédi). For any $\delta > 0$ and $k \geq 1$, there exists $N(\delta, k)$ such that if $n \geq N(\delta, k)$, then any subset of $\{1, \ldots, n\}$ with at least δn elements contains a k-term arithmetic progression. **Remark.** Your proofs of 'infinitary \Leftrightarrow finitary' probably use some sort of compactness-and-contradiction argument. One can instead use the Compactness Theorem in first-order logic to establish these results. Date: June 18, 2025. **Definition.** Let (v_n) be a sequence in a Hilbert space H and let $v \in H$. - 1. We say that v_n converges to v in density, and write D- $\lim_n v_n = v$, if $\{n \in \mathbb{N} : ||v_n v|| > \varepsilon\}$ has zero upper density for each $\varepsilon > 0$. - 2. We say that v_n converges to v in the Cesàro sense, and write C- $\lim_n v_n = v$, if $\lim_N \frac{1}{N} \sum_{n < N} v_n = v$. - 3. The Cesàro supremum of v_n is C-sup $v_n := \limsup_N \left\| \frac{1}{N} \sum_{n < N} v_n \right\|$ **Exercise 4.** Let $(v_n)_n$ be a bounded sequence in a Hilbert space H and let $v \in H$. - a) Prove that $C-\lim_n v_n = 0$ iff $C-\sup_n v_n = 0$. - b) Prove that C- $\lim_n ||v_n v|| = 0$ iff D- $\lim_n v_n = v$. - c) Prove that $\lim_n v_n = v$ implies D- $\lim_n v_n = v$, which in turn implies C- $\lim_n v_n = v$. - d) What happens if (v_n) is unbounded? **Definition.** A measure-preserving dynamical system (X, μ, T) is said to be - 1. mixing if $\lim_n \langle T^{-n}f, g \rangle = \mathbb{E}(f)\mathbb{E}(g)$ for every $f, g \in L^2(X)$. - 2. weak mixing if D- $\lim_n \langle T^{-n}f, g \rangle = \mathbb{E}(f)\mathbb{E}(g)$ for every $f, g \in L^2(X)$. **Exercise 5.** Prove that (X, μ, T) is ergodic iff $C-\lim_n \langle T^{-n}f, g \rangle = \mathbb{E}(f)\mathbb{E}(g)$ for all $f, g \in L^2(X)$. **Exercise 6** (van der Corput Lemma). Let $(v_n)_n$ be a bounded sequence in a Hilbert space H. Prove that if C-sup_n $\langle v_n, v_{n+h} \rangle = 0$, then C-lim_n $v_n = 0$. SKETCH: Normalize (v_n) and prove, via a telescoping estimate and averaging over $\{0, \ldots, H-1\}$, that $$\left\| \frac{1}{N} \sum_{n < N} v_n \right\|^2 \le O\left(\frac{1}{H^2} \sum_{h, h' < H} \frac{1}{N} \sum_{n < N} \langle v_{n+h}, v_{n+h'} \rangle\right) + O\left(\frac{H^2}{N^2}\right)$$ for any $N, H \geq 1$. Use another telescoping argument to show that $$C-\sup_{n} \langle v_{n+h}, v_{n+h'} \rangle = C-\sup_{n} \langle v_{n+|h-h'|}, v_{n} \rangle$$ for any h, h' < H, and use this to eliminate h'. **Definition.** A function $f \in L^2(X)$ is weak mixing if $D-\lim_n \langle T^{-n}f, f \rangle = 0$. **Exercise 7.** Show that for any weak mixing $f \in L^2(X)$, we have D- $\lim_n \langle T^{-n}f, g \rangle = 0$ for every $g \in L^2(X)$. Deduce that X is weak mixing iff every $f \in L^2(X)$ with mean zero is weak mixing. HINT: Use Exercises 4 and 6, and Cauchy-Schwarz. **Exercise 8.** For any $f \in L^2(X)$, prove that $\{T^n f : n \in \mathbb{Z}\}$ has compact closure in $L^2(X)$ iff for each $\varepsilon > 0$, the set $\{n \in \mathbb{Z} : ||f - T^n f|| < \varepsilon\}$ is syndetic. If any of these hold, we say that f is almost periodic. **Exercise 9.** Prove that if f is weak mixing and g is almost periodic, then $\langle f, g \rangle = 0$. **Exercise 10.** Prove that the set $\mathcal{AP}(X)$ of almost periodic functions in $L^2(X)$ is closed.