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1. Lecture 1 (Samy Lahlou): Crash course on Measure Theory, Part I

Given a set X, our goal is to define a map µ : P(X) → [0,∞] that assigns to each subset A ⊆ X a measure
µ(A) ∈ [0,∞] that ‘behaves like the volume of A’. This turns out to be impossible in full generality (and we
shall see using ergodic-theoretic methods that this impossibility is for good reason; see Exercise 4.20), so we
instead restrict to special subsets of X with a nice algebraic (think: ‘constructible’) structure.

Further reading. [Tse23, Lectures 1 to 5] and [Fol99, Chapter 1].

Definition 1.1. Let X be a set. A σ-algebra on X is a collection B ⊆ P(X) of subsets of X containing ∅
and is closed under complements and countable unions. More precisely:

1. (Non-trivial). ∅ ∈ B.
2. (Closure under complements). For any A ∈ B, we have X \A ∈ B.
3. (Closure under countable unions). For any countable family {An ∈ B : n ∈ N}, we have

⋃
n An ∈ B.

Definition 1.2. If B is a σ-algebra on a set X, the pair (X,B) is said to be a measurable space.

A useful way to construct a σ-algebra is to start with an arbitrary family C ⊆ P(X) and close1 it under
the above three conditions. Abstractly:

Definition 1.3. The σ-algebra generated by C ⊆ P(X) is ⟨C⟩σ :=
⋂
{B : B ⊇ C is a σ-algebra on X}.

Date: June 12, 2025.
1This ‘closure’ operation can be made precise as follows. Starting with C0 := C, throw in all the subsets of X that is necessary

to satisfy Definition 1.1 relativized to C0 to obtain C1 (that is, let C1 contain ∅ and such that if A ∈ C0, then X \ A ∈ C1,
and similarly for condition 3). Then, let C2 be defined by throwing in all the countable unions and complements of sets in C1.
Doing so infinitely-many times and taking the union

⋃
α
Cα will give us ⟨C⟩σ , but beware that this process must proceed into

the transfinite up to α < ω1, where ω1 is the first uncountable ordinal; ask your local set theorist why.

1
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2 ZHAOSHEN ZHAI

Note that ⟨C⟩σ is indeed a σ-algebra on X since the intersection of σ-algebras is again a σ-algebra.

Definition 1.4. Let X be a topological space. The Borel σ-algebra on X is B(X) := ⟨T ⟩σ, where T is the
topology on X. The elements of B(X) are called the Borel sets of X.

Intuitively, for any topological space X, one would like to ‘measure’ the Borel sets. This is justified since
if one wants a measure compatible with the topology, then one must be able to measure the open sets, and
hence also closed sets, countable unions of closed sets (called Fσ sets), countable intersections of open sets
(called Gδ sets), countable intersections of Fσ sets, countable unions of Gδ sets, and so on2.

Definition 1.5. A measure on a measurable space (X,B) is a map µ : B → [0,∞] such that µ(∅) = 0 and
µ(
⊔

n∈N An) =
∑

n∈N µ(An) for any pairwise disjoint family {An ∈ B : n ∈ N}.
The triple (X,B, µ) is then called a measure space. A Borel measure is a measure defined on some Borel

σ-algebra.

Example 1.6 (Lebesgue). Equip R with its usual topology. There is3 a unique measure λ : B(R) → [0,∞]
on R, called the Lebesgue measure, such that λ([a, b]) = b− a for each a ≤ b.

Example 1.7 (Bernoulli). Equip 2 = {0, 1} with the discrete topology and consider the product topology
on 2N. For each p ∈ [0, 1], is a unique measure µp : B(2N) → [0,∞] on 2N, called the Bernoulli (p) measure,
such that for each word w ∈ 2<N, we have µp([w]) = pn1(1− p)n0 where ni is the number of i ∈ {0, 1} in w
and [w] is the set of all sequences in 2N containing w as a prefix.

If p = 0 (similarly if p = 1), then µp(ξ) ∈ {0, 1}, and we have µp(ξ) = 1 iff (p, p, p, . . .) ∈ ξ. Thus, all of
the measure is concentrated at (p, p, p, . . .). Measures in which this occurs are called Dirac measures.

Example 1.8 (Dirac). Let X be a set and fix x ∈ X. The Dirac measure concentrated at x is the measure
δx : P(X) → {0, 1} defined by δx(A) := 1 iff x ∈ A, and δx(A) := 0 iff x ̸∈ A.

Definition 1.9. A measure µ on (X,B) is said to be finite if µ(X) < ∞, a probability measure if µ(X) = 1,
and σ-finite if there is a partition X =

⊔
n∈N Xn such that Xn ∈ B and µ(Xn) < ∞ for all n ∈ N.

Unless otherwise stated, all measures are assumed to be σ-finite. In fact, we will usually only deal with
probability measures, since we can also normalize a finite measure to a probability measure by µ 7→ µ/µ(X).

Lastly, even though µ is only defined on the σ-algebra B, we can slightly extend µ to a larger σ-algebra.

Definition 1.10. Let (X,B, µ) be a measure space. A subset Z ⊆ X is said to be µ-null if there exists some
Z ′ ∈ B such that Z ⊆ Z ′ and µ(Z ′) = 0. We write Nullµ for the set of all µ-null subsets of X. A subset
A ⊆ X is said to be µ-conull if X \A is µ-null.

Definition 1.11. Let (X,B, µ) be a measure space. A subset A ⊆ X is µ-measurable4 if there exists some
B ∈ B and some µ-null set Z such that A = B ∪ Z. We write Measµ for the set of all µ-measurable sets.

It is an exercise that Measµ = ⟨B ∪Nullµ⟩σ. Moreover, µ admits a unique extension to a map µ : Measµ →
[0,∞], called the completion of µ, and this measure satisfies Measµ = Measµ. Hint: µ(B ∪ Z) := µ(B).

Definition 1.12. A measure µ is complete if µ = µ.

For convenience, we will always assume that measures are complete. Neither measures λ nor µp in Ex-
amples 1.6 and 1.7 are complete, so we tacitly extend them.

We end with some easy exercises on measures; please read/prove them, as they will be used freely in the
future; they are roughly ranked by difficulty. Throughout, let (X,B, µ) be a measure space and let An ∈ B.

2This goes up the Borel hierarchy, studied in Descriptive Set Theory; see [Kec95].
3We will not prove this fact, but it is an application of Carathéodory’s Extension Theorem; see [Tse23, Lecture 4].
4Very confusing terminology. One might think that elements of B are the ‘measurable’ ones, but this removes µ from the

picture. In general, there are much more µ-measurable sets that there are sets in B. Indeed, there are 2ℵ0 -many Borel sets on
R, but there are 22ℵ0 -many λ-measurable sets!
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Exercise 1.13 (Monotonicity). If A1 ⊆ A2, then µ(A1) ≤ µ(A2).

Deduce that if µ is finite, then µ is a bounded function. (Are σ-finite measures bounded?)

Exercise 1.14 (Inclusion-exclusion). For any A1, A2 ∈ B, we have µ(A1∪A2)+µ(A1∩A2) = µ(A1)+µ(A2).

Exercise 1.15 (Continuity ↗). If (An)n∈N is increasing, then µ(
⋃

n∈N An) = limn µ(An).

Exercise 1.16 (Continuity ↘). If (An)n∈N is decreasing and µ(A1) < ∞, then µ(
⋂

n∈N An) = limn µ(An).

Exercise 1.17. Show that λ(Q) = 0. Hint: What is the Lebesgue measure of singletons?

Let P be a property of some points in X. We say that P holds µ-almost everywhere (or µ-almost surely)
if {x ∈ X : x satisfies P} is µ-conull.

Exercise 1.18 (Borel-Cantelli Lemmas). Let (An)n∈N be a sequence of µ-measurable sets.

1. If
∑

n∈N µ(An) < ∞, then µ-almost every x ∈ X lives in at-most finitely-many An.
2. (Measure Compactness). If µ(X) < ∞ and there exists ε > 0 such that µ(An) ≥ ε for all n ∈ N, then

at least an ε-measure set of x ∈ X lives in infinitely-many An’s.

For measurable spaces (X1,B1) and (X2,B2), define B1 ⊗ B2 := ⟨B1 ×B2 : Bi ∈ Bi⟩σ.

Exercise 1.19. Show that if Xi are second-countable topological spaces, then B(X1×X2) = B(X1)⊗B(X2).

Exercise 1.20. Let X be a topological space. A Cantor set is a subset C ⊆ X homeomorphic to 2N.

1. Show that the ‘middle-thirds Cantor set’ C ⊆ [0, 1] is a Cantor set as in the above definition. Moreover,
show that λ(C) = 0. Hint: Recall the construction C =

⋂
n∈N Cn and use continuity.

2. Define a Cantor set C ⊆ [0, 1] with positive Lebesgue measure. Hint: fatten the standard construction.

A measurable set A ⊆ X is said to be an atom if there is no subset B ⊆ A with 0 < µ(B) < µ(A). For
example, singletons {x} are atoms under the Dirac measure δx. More generally:

Exercise 1.21 (Atomic Decomposition). If (X,B, µ) is a σ-finite measure space, B is countably generated
(i.e., B = ⟨B0⟩ for some countable B0 ⊆ P(X)), and separates points (i.e., if x ̸= y, then there exists B ∈ B
such that x ∈ B ̸∋ y.), then every atom A ∈ B is a singleton. Moreover, if {xα} are all the atoms (how many
can there be?), then µ = µ0 +

∑
α aαδxα for some atomless measure µ0 and some aα ≥ 0.

2. Lecture 2 (Samy Lahlou): Crash course on Measure Theory, Part II

Let (X,B, µ) be a measure space. Our goal is to define the Lebesgue integral
∫
f dµ for a function f : X → R.

Again, this is not possible in full generality, so we restrict ourselves to the so-called measurable functions.

Further reading. [Tse23, Lectures 9 to 13, 17 to 21] and [Fol99, Chapters 2 and 3].

Definition 2.1. A simple function is an R-linear combination of characteristic functions on µ-measurable
sets, i.e., if (Ei)i≤n is a collection of pairwise-disjoint µ-measurable sets and (ai)i≤n are distinct reals, then
ϕ :=

∑
i≤n aiχEi is a said to be a simple function. Define its (Lebesgue) integral as

∫
ϕ dµ :=

∑
i≤n aiµ(Ei).

For a (bounded) positive function f : X → R≥0, we might define
∫
f dµ by approximating f by simple

functions from below, say by an increasing sequence (ϕn) of simple functions such that f = limn ϕn uniformly.
However, not all functions f admit such an approximation.

To see this, let us attempt to construct such a sequence (ϕn). For each n, we will approximate the cutoff
of f at 2n, i.e., the function min(f, 2n). We do so by partitioning the codomain [0, 2n] into intervals of length
2−n, for a total of kn := 2n/2−n = 22n intervals. Set Ek := f−1([2−nk,∞)) for each k ∈ {1, . . . , kn}, and let
ϕn :=

∑
k≤kn

2−nχEk
. One easily checks that f = limn ϕn uniformly.

However, Ek is not guaranteed to be µ-measurable! To fix this, we simply define the issue away.
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Definition 2.2. A function f : X → Y between measurable spaces (X,B) and (Y, C) be measurable spaces
is said to be (B, C)-measurable if f−1(C) ∈ B for all C ∈ C.

A function f : X → Y between topological spaces is said to be Borel if it is (B(X),B(Y ))-measurable.
A Borel isomorphism is a bijection f : X → Y such that both f and f−1 are Borel.

Exercise 2.3. Continuous maps are Borel. Hint: Define a σ-algebra containing open sets in the codomain.

So far we only dealt with measurable spaces. Let us now bring a measure into the picture.

Definition 2.4. Let (X,µ)5 be a measure space and Y be a topological space. A function f : X → Y is
said to be µ-measurable if it is (Measµ,B(Y ))-measurable.

Remark 2.5. Compositions of µ-measurable functions need not be µ-measurable.

The following exercise is one of the main reasons why µ-measurable functions are introduced, and ulti-
mately also why the Lebesgue integral is superior compared to the Riemann integral.

Exercise 2.6. In separable metric spaces, pointwise limits of µ-measurable functions are µ-measurable, i.e.,
if (fn) is a sequence of µ-measurable maps fn : X → Y from a measure space (X,µ) to a separable space Y ,
and f := limn fn (pointwise), then f : X → Y is µ-measurable.

Hint: Let C := {B ∈ B(Y ) : f−1(B) ∈ Measµ}. Show that C is a σ-algebra containing all open set in Y ,
so C = B(Y ), as desired. For each U ⊆ Y open, use separability to write U =

⋃
n∈N Bn, where each Bn is a

ball whose closure is contained in U , and show that f−1(U) ∈ Measµ.

Exercise 2.7. If f1, f2 : (X,µ) → R are µ-measurable and g : R2 → R is Borel, then g(f1, f2) : X → R is
also µ-measurable. In particular, f1 + f2 and f1 · f2 are µ-measurable.

Exercise 2.8. If (fn) is a sequence of µ-measurable functions fn : X → R, then supn fn, infn fn, lim supn fn,
and lim infn fn are also µ-measurable.

Notation 2.9. We write L(X,µ) for the set of all µ-measurable functions f : (X,µ) → R, and L+(X,µ) for
those which are non-negative.

We are finally ready to define the Lebesgue integral.

Definition 2.10. Let (X,µ) be a measure space. The (Lebesgue) integral of f ∈ L+(X,µ) is∫
f dµ := sup

{∫
ϕ dµ : 0 ≤ ϕ ≤ f simple function

}
.

In general, if f ∈ L(X,µ), we decompose f = f+ − f− where f+ := max {f, 0} and f− := max {−f, 0}. The
(Lebesgue) integral of f is

∫
f dµ :=

∫
f+ dµ−

∫
f−dµ, provided that one of the terms is finite.

If
∫
f dµ < ∞, we say that f is µ-integrable, in which case we write f ∈ L1(X,µ). More generally,

Definition 2.11. Take p ∈ [1,∞] and let Lp(X,µ) be the set of all µ-measurable functions f : X → R such
that ∥f∥p < ∞, where ∥f∥p := (

∫
|f |p dµ)1/p if p < ∞ and ∥f∥∞ := ess-sup |f | := inf {c ≥ 0 : |f | ≤ c µ-a.e.}.

Exercise 2.12. Let f, g ∈ Lp(X,µ). If f ≤ g, then ∥f∥p ≤ ∥g∥p.

Since a µ-measurable function f : X → R can be approximated from below by simple functions (ϕn), we
should be able to calculate

∫
f dµ as the limit of

∫
ϕn dµ. Indeed,

Theorem 2.13 (Monotone Convergence Theorem). If (fn) ∈ L+(X,µ) and fn ↗ f , then
∫
fn dµ ↗

∫
f dµ.

Corollary 2.14. If (fn) ∈ L+(X,µ), then
∑

n

∫
fn dµ =

∫ ∑
n fn dµ.

Exercise 2.15. For any f, g ∈ L1(X,µ) and a, b ∈ R, we have
∫
(af + bg) dµ = a

∫
f dµ+ b

∫
g dµ.

Hint: Simple ⇝MCT L+ ⇝ L1.
5Whenever the σ-algebra is not stated, we assume that µ is defined on Measµ. In particular, we assume that µ is complete.
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Exercise 2.16. Let f, g ∈ L1(X,µ). If f = g µ-a.e., then
∫
f dµ =

∫
g dµ. Hint: Consider

∫
(f − g) dµ.

We list two more convergence theorems that will be useful later on.

Theorem 2.17 (Fatou’s Lemma). If (fn) ∈ L+(X,µ), then
∫
lim infn fn dµ ≤ lim infn

∫
fndµ.

Theorem 2.18 (Dominated Convergence Theorem). Let (fn) ∈ L1(X,µ). If fn → f µ-a.e. and |fn| ≤ g
for some g ∈ L1(X,µ), then limn

∫
fn dµ =

∫
f dµ.

Let us now discuss differentiation of functions f : X → R; for convenience, we assume6 that f ∈ L+(X,µ).
For these functions, we can define a new measure ν on B by ν(B) :=

∫
B f dµ :=

∫
f ·χB dµ, which measures

the ‘area under the curve’. Note that for each B ∈ B, we have B is ν-null whenever B is µ-null.
It turns out that the ‘correct’ setting to discuss differentiation is between two measures µ and ν which

satisfy the above condition.

Definition 2.19. If µ, ν are measures on a measurable space (X,B) and B is ν-null whenever B is µ-null
for each B ∈ B, we say that ν is absolutely continuous w.r.t µ, and write ν ≪ µ.

Theorem 2.20 (Lebesgue-Radon-Nikodym Theorem). If ν ≪ µ are σ-finite measures on a measurable space
(X,B), then there exists a B-measurable map f : X → R≥0 such that ν(B) =

∫
B f dµ for all B ∈ B.

Such a function f : X → R≥0 is unique µ-a.e., and is called the Radon-Nikodym derivative of ν w.r.t. µ,
denoted dν

dµ . Thus, we have ν(B) =
∫
B

dν
dµdµ for all B ∈ B.

Corollary 2.21. In the above setting, we have
∫
g dµ =

∫
g dµ
dν dν for all g ∈ L1(X,µ).

To relate dν/dµ to derivatives in calculus (say on Rn), we let µ := λ be Lebesgue measure on Rn.

Theorem 2.22 (Lebesgue Differentiation Theorem). For any locally-integrable function f : Rn → R (i.e. if
f · χK ∈ L1(Rn, λ) for every compact K ⊆ Rn) and for λ-a.e. x ∈ Rn, we have

f(x) = lim
ε→0

1
λ(Bε(x))

∫
Bε(x)

f dλ.

Corollary 2.23. For any locally-finite Borel measure µ ≪ λ on Rn and for λ-a.e. x ∈ Rn, we have

dµ
dλ (x) = lim

ε→0

µ(Bε(x))
λ(Bε(x))

.

We end by briefly mentioning the ‘Isomorphism Theorems’. These justify why we only gave three examples
in Lecture 1, and allows us to work in concrete spaces like [0, 1] or 2N.

Definition 2.24. A measurable space (X,B) is said to be standard Borel if B is the Borel σ-algebra of some
Polish (i.e. separable and completely metrizable) topology on X.

A probability space (X,B, µ) is standard if (X,B) is standard Borel.

Theorem 2.25 (Borel Isomorphism Theorem). Any two uncountable standard Borel spaces are Borel iso-
morphic. In particular, they all have cardinality continuum and are Borel isomorphic to 2N.

Definition 2.26. Let (X,B) and (Y, C) be measurable spaces. If f : X → Y is (B, C)-measurable and µ is a
measure on B, the pushforward measure of µ by f is the measure f∗µ on C defined by f∗µ(C) := µ(f−1(C)).

Definition 2.27. Two measure spaces (X,B, µ) and (Y, C, ν) are said to be a measure isomorphic if there
is a measure-preserving transformation f : X → Y , i.e., a map f : X → Y such that f∗µ = ν, and such that
there is a µ-conull set X0 ⊆ X and a ν-conull set Y0 ⊆ Y on which f and f−1 restrict to Borel isomorphisms.

Theorem 2.28 (Measure Isomorphism Theorem). Any two atomless standard probability spaces are measure
isomorphic. In particular, they are all measure isomorphic to ([0, 1], λ).

6Otherwise, we will need to discuss ‘signed measures’.
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3. Lecture 3 (Peng Bo): An introduction to Ergodic Theory

Generally speaking, a dynamical system is just a group action. For instance, actions of Z (resp. R) on some
space X lead to discrete (resp. continuous) dynamical systems, and different actions on different spaces are
studied from different point of views:

1. Continuous actions on topological spaces lead to topological dynamics.
2. Measure preserving actions on measure spaces and lead to measured group theory and ergodic theory.
3. Geometric (proper and cocompact) actions on geodesic metric spaces lead to geometric group theory.
4. Linear actions on Banach spaces (or TVSs) lead to functional analysis and C∗-algebras.

Here, we will be interested in measure preserving actions on measure spaces. To motivate these actions,
we will also mention the theory of continuous actions on topological spaces, which was the original motivation
for von-Neumann to introduce measure preserving actions in the first place. For simplicity, we will focus on
actions of Z (so it suffices to provide a single generator) on compact (resp. probability) spaces.

Definition 3.1. A topological dynamical system is a pair (X, f), consisting of a compact topological space
X and a homeomorphism f : X → X.

Definition 3.2. A measure-preserving dynamical system is a tuple (X,µ, T ) consisting of a standard prob-
ability space (X,µ) and a measure-preserving transformation T ∈ MPT(X,µ).

Definition 3.3. A topological system (X, f) is minimal if there is no proper subsystem, i.e. if there is no
f -invariant compact subspace Y ⊆ X.

Exercise 3.4. A topological system (X, f) is minimal if every f -orbit in X is dense. Hint: If {fn(x)}n∈Z
is not dense, then its closure is a proper subsystem.

The measure-theoretic analogue of minimal system is an ergodic system. As we shall see, these are much
more amenable than their topological-counterparts.

Definition 3.5. A measure-preserving system (X,µ, T ) is ergodic if every T -invariant Borel subset is either
µ-null or µ-conull.

Example 3.6. Consider the circle S1 := R/Z ∼= [0, 1) and an irrational angle θ ∈ [0, 1). Then the (irrational)
rotation Rα : S1 → S1 given by x 7→ x+ θ is both minimal and ergodic.

We will show that Rα is ergodic in Proposition 4.9. To see that Rα is minimal, it suffices to show that
the orbit {nθ}n∈Z approaches 0. Indeed, there exists some n ∈ Z such that [nθ, (n + 1)θ] contains 0 in the
quotient. Without loss of generality, we can assume that d(0, (n + 1)θ) ≤ d(0, nθ), so θ1 := (n + 1)θ ≤ θ/2
in the quotient and is in the orbit of θ. Replacing θ by θ1 and repeating furnishes a sequence θn → 0.

In contrast to the above example, every homeomorphism on S2 has a fixed point by Brower’s fixed point
theorem. Thus, there is no minimal system on S2. More generally, there is no minimal system in S2n.

Open Question 3.7. Characterize all manifolds supporting a minimal system. Remark: Negative results
include the unit interval and S2n. This question is still open, even in dimension three.

Of course, any such characterization is modulo the isomorphism relation.

Definition 3.8. Two topological dynamical systems (X, f) and (Y, g) are isomorphic if there exists a home-
omorphism h : X → Y such that g = h ◦ f ◦ h−1.

The Measure Isomorphism Theorem (Theorem 2.28) asserts that any two atomless standard probability
spaces are measure isomorphic. This allows us to reduce the classification of (atomless) measure-preserving
dynamical systems to just measure-preserving transformations.

Open Question 3.9. Classify ergodic measure-preserving transformations up to isomorphism.

Here is a celebrated positive result.
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Definition 3.10. A Bernoulli shift is a measure-preserving dynamical system (ΣZ, πZ, S) where Σ is a finite
set, π is a probability measure on Σ, and S is the left-shift map S(x)(n) := x(n+ 1).

The entropy of a Bernoulli shift is −
∑

i≤|Σ| π(i) log(π(i)).

Theorem 3.11 (Ornstein). Two Bernoulli shifts are isomorphic iff their entropies coincide.

Lastly, we end with a recurrence question: given a µ-measurable subset U ⊆ X and a point x ∈ X, how
many points in the orbit of x are in U?

Theorem 3.12 (Birkhoff’s Pointwise Ergodic Theorem; Theorem 5.1). Let (X,µ, T ) be an ergodic system
and let U ⊆ X be a µ-measurable subset. Then limn |{i < n : T ix ∈ U}|/n = µ(U) for µ-a.e. x ∈ X.

4. Lecture 4 (Zhaoshen Zhai): Examples of Ergodic Transformations

Following Lecture 3, we begin by studying actions of N on a standard probability space (X,µ), which is
generated by a (probability) measure-preserving transformation T : X → X, called a pmp transformation.

Throughout, let (X,µ) be a standard probability space and let T : X → X be a pmp transformation.

Further reading. [Tse22, Lectures 1 to 4].

Definition 4.1. The orbit equivalence relation of T is the equivalence relation ET ⊆ X2 defined by xET y
iff Tn(x) = Tm(y) for some n,m ∈ N. The forward orbit of a point x ∈ X is the set {Tn(x)}n∈N.

Definition 4.2. Let E be an equivalence relation on a set X.

1. A subset A ⊆ X is E-invariant if A is a union of E-classes. The E-saturation of A is [A]E :=
⋃

x∈A[x]E ,
which is clearly E-invariant, and A is E-invariant iff A = [A]E .

2. A function f : X → Y is E-invariant if f is constant on each E-class.

We say that A (or f) is T -invariant if it is ET -invariant.

Remark 4.3. Note that A ⊆ X is T -invariant iff T−1(A) = A, and f : X → Y is T -invariant iff f ◦ T = f .

Observe that [A]ET =
⋃

n,m∈Z T
−n(Tm(A)), so [A]ET is not a priori measurable. It turns out that [A]ET

is measurable by a theorem of Descriptive Set Theory (which one?), but we can avoid it with the following
theorem, which is of independent interest.

Theorem 4.4 (Poincaré Recurrence). Every measurable set A ⊆ X is a.e.-forward recurrent, i.e., there is
a measurable set A0 ⊆ X such that A0 =µ A and for each x ∈ A0, we have Tn(x) ∈ A0 for some n ≥ 1.

Proof. Let W :=
⋂

n≥1 {x ∈ A : Tn(x) ̸∈ A}, which is clearly measurable. Note that W ∩ T−n(W ) = ∅ for
each n ≥ 1, so the family {T−n(W )}n∈N is pairwise-disjoint, and hence W is wandering:

Definition 4.5. A set W ⊆ X is T -wandering if the family {T−n(W )}n∈N is pairwise-disjoint.

Lemma 4.6. Every measurable wandering set T is null.

Proof.
∑

n µ(W ) =
∑

n µ(T−n(W )) = µ(
⊔

n T
−n(W )) ≤ µ(X) < ∞, so µ(W ) = 0. □

Set Z :=
⋃

n T
−n(W ), which is still null, and note that A0 := A \ Z =µ A is forward recurrent. ■

Corollary 4.7. For all measurable sets A ⊆ X, there exists A0 =µ A such that [A0]ET =
⋃

n T
−n(A0).

Definition 4.8. An equivalence relation E ⊆ X2 on (X,µ) is ergodic if every E-invariant measurable set
A ⊆ X is either null or conull. A pmp T : X → X is ergodic if ET is ergodic.

Proposition 4.9. The irrational rotation Rα : S1 → S1 is ergodic w.r.t. the Lebesgue measure on S1.

Proof. We will need the following lemma.
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Lemma 4.10 (99% Lemma for λ). For any A ⊆ [0, 1) with positive Lebesgue measure, there is an
interval I ⊆ [0, 1) such that at-least 99% of I is covered by A, i.e., λ(A ∩ I)/λ(I) ≥ 0.99.

Proof. Fix ε > 0 and (by outer regularity of λ) let U ⊆ [0, 1) be open such that λ(A)/λ(U) ≥ 1 − ε.
Write U =

⊔
n∈N In for disjoint open intervals In ⊆ [0, 1), and observe that

λ(A)
λ(U) = 1

λ(U)
∑
n∈N

λ(A ∩ In) =
∑
n∈N

λ(In)
λ(U)

λ(A ∩ In)
λ(In)

≥ 1− ε.

Hence a convex combination of {λ(A ∩ In)/λ(In)}n is at-least 1− ε, so the result follows. □

Now, suppose towards a contradiction that Rα is not ergodic, so there exists an Rα-invariant measurable
A ⊆ [0, 1) such that both A and Ac have positive λ-measure. By the 99% Lemma, let I ⊆ [0, 1) (resp. J) be
an interval such that 99% of I is covered by A (resp. Ac); without loss of generality, suppose that |J | ≤ |I|.

By Rα-invariance, 99% of any translate of J is still covered by Ac, and so it suffices to cover at-least
half of I by translates of J , for then 99%/2 > 1% of I is covered by Ac, a contradiction. This can be done
by minimality of Rα (i.e., density of any Rα-orbit), since we can translate the left-endpoint of J arbitrarily
close to the right-endpoint of previous translates of J . ■

Here is a cute application of the ergodicity of Rα. For any map f : X → X, its graph is the set Gf ⊆ X2

of pairs (x, f(x)). We can view Gf as an abstract graph with vertex set X and with edges (x, f(x)).
What is the chromatic number of GRα? Since Rα is not periodic, each connected component is a Z-line

{Rn
α(x)}n∈Z, and GRα is the disjoint union of continuum-many such Z-lines. Using the Axiom of Choice, we

can pick a point in each Z-line, so we can 2-color GRα by coloring said points, say blue, and alternating.
Note that a (finite) coloring of a graph G is just a map c : G → n for some n ∈ N such that if (x, y) ∈ G,

then c(x) ̸= c(y). Thus we can ask for the measurable chromatic number of G: what is the minimal n ∈ N
such that there is a measurable colouring c : G → n? Clearly, GRα is measurably 3-colourable.

Corollary 4.11. The graph GRα ⊆ X2 is not measurably 2-colourable.

Proof. If it is, then there is a measurable colour A ⊆ X of GRα such that Rα(A) = Ac, so λ(A) = λ(Ac) =
1/2. Then R2α(A) = R2

α(A) = A, so A is a measurable R2α-invariant set. Since 2α is irrational, we see that
R2α is ergodic, and hence µ(A) ∈ {0, 1}, a contradiction. ■

Proposition 4.12. The Bernoulli shift T : 2N → 2N is ergodic w.r.t. the Bernoulli(1/2) measure µ on 2N.

Proof. We will prove a stronger result, which implies that T is ergodic.
Definition 4.13. A pmp T : X → X is said to be mixing if for any measurable A,B ⊆ X, we have
µ(A ∩ T−nB) → µ(A)µ(B) as n → ∞.

Lemma 4.14. Mixing implies ergodic.

Proof. If A ⊆ X is a T -invariant, then µ(A) = µ(A ∩ T−nA) → µ(A)2, so µ(A) ∈ {0, 1}. □

Since µ is defined by extending the 1/2-measure on cylinder sets, it suffices to show that T mixes cylinders
A := [s] and B := [t] for s, t ∈ 2<N. Indeed, let n ≥ ℓ(s) so that the translate T−n([t]) contains sequences
specified at indices disjoint from that of s, so µ([s] ∩ T−n([t])) = µ([s])µ([t]). ■

To give more examples, we will need the following lemma, which is proved the same way as Lemma 4.10.

Lemma 4.15 (99% Lemma for µ). For any measurable A ⊆ 2N, there exists a cylinder [w] ⊆ 2N such that
at-least 99% of [w] is covered by A, i.e. µ(A ∩ [w])/µ([w]) ≥ 0.99.

Exercise 4.16. Show that the odometer transformation T : 2N → 2N is ergodic, where T takes a sequence,
thought of as the binary representation of a number written in reverse, and adds 1 to it (carrying over if
necessary); for instance, T (00110 . . . ) := 10110 . . . and T (11100 . . . ) := 00010 . . . , and by convention, we let
T (11111 . . . ) := 00000 . . . .

Hint: Use the 99% Lemma for µ, with the observation that for any words s, t ∈ 2<N of the same length,
there exists k ∈ N such that T k(sx) = tx for all x ∈ 2N.
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Let us generalize ergodicity of transformations T : (X,µ) → (X,µ) to actions of a group G on (X,µ).

Definition 4.17. Let G be a group and let (X,µ) be a standard Borel space. An action ϕ : G ↷ X is said
to be Borel if for each g ∈ G, the map x 7→ gx is Borel; measure-preserving if it is Borel and µ(gB) = µ(B)
for each g ∈ G and each Borel B ⊆ X; and ergodic if it is measure-preserving and the orbit equivalence
relation Eϕ of ϕ, given by xEϕy iff y = gx for some g ∈ G, is ergodic.

Exercise 4.18. For each n ∈ N, let σn : 2N → 2N be the nth-bit flip map, defined by flipping xn to 1− xn

and fixing all other coordinates. Let G := ⟨σn⟩n∈N ∼=
⊕

n Z/2Z, which naturally acts on 2N.

1. Show that the orbit equivalence relation Eϕ is given by eventual equality (denoted E0), where xE0y iff
there exists N ∈ N such that xn = yn for all n ≥ N .

2. Observe that ϕ is a pmp action and use the 99% Lemma for µ to show that ϕ is ergodic.

Exercise 4.19. Consider the translation action ϕ : Q ↷ (R, λ), whose orbit equivalence relation is given by
xEQy iff x− y ∈ Q. Use the 99% Lemma for λ to show that ϕ is ergodic.

The following exercise shows that ergodicity gives rise to non-measurable transversals.

Exercise 4.20. Let (X,µ) be an atomless measure space and let ϕ : G ↷ (X,µ) be a µ-null-preserving
action. Prove that if ϕ is ergodic, then every transversal of Eϕ is non-measurable.

Hint: Let T ⊆ X be a measurable transversal, so X =
⊔

g∈G gT . Observe that µ(T ) > 0, and use that
(X,µ) is atomless to partition T = S1 ⊔ S2 non-trivially. What can you say about the Eϕ-saturations of Si?

To study ergodic transformations further, it would be useful to have alternative characterizations of
ergodicity. The Ergodic Theorems (see Lecture 5) are the strongest results of this kind; here, we will be
content with the following easy reformulations.

Theorem 4.21. The following are equivalent for a pmp transformation T : X → X.

1. T is ergodic.
2. Every T -invariant measurable function f : X → Y to a standard Borel space Y is constant a.e..
3. For every positively-measured subset A ⊆ X, its saturation [A]ET is conull.

Proof. Note that (2) and (3) each easily imply (1): if A ⊆ X is a measurable T -invariant set, then

2. the characteristic function χA : X → {0, 1} is T -invariant, and hence either A is null or conull;
3. if A is not null, then µ(A) > 0, and hence A = [A]ET is conull.

Conversely, suppose that T is ergodic. For (3), note that if A has positive measure, then so must [A]ET if
it is measurable in the first place, so [A]ET is conull. Now, either invoke some Descriptive Set Theory and
prove that [A]ET is measurable, or proceed by letting A0 ⊆µ A be forward recurrent, so that [A0]ET ⊆ [A]ET

is measurable by Corollary 4.7; hence [A]ET is measurable too, as desired.
It remains to prove (2). By the Borel Isomorphism Theorem (Theorem 2.25), it suffices to prove it in the

case when Y := 2N equipped with the Borel σ-algebra, which is generated by cylinders. Let f : X → 2N be a
T -invariant measurable function, so f−1(B) is T -invariant for each Borel B ⊆ 2N. In particular, f−1([w]) is
either null or conull for each word w ∈ 2<N. We proceed by finding a (necessarily unique) sequence y ∈ 2N
such that f−1(y) is conull, as follows. Call a word w ∈ 2<N heavy if f−1([w]) is conull; clearly ∅ is heavy, and
if w is heavy, then exactly one of w0 and w1 is heavy. Thus there is a unique heavy branch {y|n}n∈N, which
gives rise to the desired sequence y ∈ 2N since f−1(y) =

⋂
n f

−1([y|n]) is the intersection of countably-many
conull sets, hence conull. ■

5. Lecture 5 (Zhaoshen Zhai): Birkhoff’s Pointwise Ergodic Theorem

Throughout, let (X,µ, T ) be a measure-preserving dynamical system. We can rephrase (1 ⇔ 3) in Theorem
4.21 by the statement that T is ergodic iff for every positively-measured subset A ⊆ X and any x ∈ X,
we have [x]ET ∩ A ̸= ∅. This gives us a ‘soft’/‘qualitative’ characterization of ergodicity: every orbit meets
every positively-measured set. It turns out that we can boost this and obtain a more quantitative statement
too, of, say, how often they meet.
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Further reading. [Tse22, Lectures 5 to 7].

Theorem 5.1 (Birkhoff’s Pointwise Ergodic Theorem). A measure-preserving dynamical system (X,µ, T )
is ergodic iff any of the following statements hold, where ITn (x) := {T ix}i<n and AT

nf := 1
n

∑
i<n f ◦ T i.

1. For all f ∈ L1(X,µ), we have limn→∞ AT
nf =µ

∫
f dµ.

2. For all f ∈ L∞(X,µ), we have limn→∞ AT
nf =µ

∫
f dµ.

3. For all measurable A ⊆ X, we have limn→∞
1
n |I

T
n (x) ∩A| = µ(A) for µ-a.e. x ∈ X.

We can interpret (3) by saying that the average number of times the forward-orbit of µ-a.e. x ∈ X meets
A tends to µ(A), so if µ(A) > 0, then the (forward-)orbit of x will always meet A. Statements (1) and (2)
are generalizations of (3); instead of counting the average number of times ITn (x) meets A, we consider the
average value of a measurement f : X → R (i.e., f ∈ L1(X,µ) or f ∈ L∞(X,µ)) in the following two senses:

• (Time average). For x ∈ X, the time average value of f evaluated at x is AT
nf(x) := 1

n

∑
i<n f(T i(x)).

• (Space average). The space average
∫
f dµ of f , which is the average evaluated on the entire system.

Birkhoff’s Pointwise Ergodic Theorem then states that these two averages coincide iff T is ergodic.

Proof. Clearly (1) ⇒ (2). For (2) ⇒ (3), take f := χA and note that 1
n |I

T
n (x) ∩ A| = AT

nf(x). If (3) holds,
then T is ergodic since if A ⊆ X is a measurable T -invariant set, then the orbit of any x ∈ X either lies in
A or Ac, so 1

n |I
T
n (x) ∩A| ∈ {0, 1} uniformly for all n ∈ N. By (3), this shows that µ(A) ∈ {0, 1}.

Suppose now that T is ergodic and let f ∈ L1(X,µ). Replacing f by f −
∫
f dµ, we can assume that∫

f dµ = 0. To show that limn A
T
nf = 0, it suffices by symmetry to show that lim supn AT

nf ≤ 0.
To this end, we first note that l := lim supn AT

nf : X → R is T -invariant. Indeed, for any x ∈ X, we have

AT
nf(x) =

1
n
f(x) + n− 1

n
AT

n−1f(T (x)),

so taking lim supn gives l(x) = l(Tx) as desired. Thus l is constant a.e. by Theorem 4.21, say at l0 ∈ R.
Suppose towards a contradiction that f∗ := l0/2 > 0, so for each x ∈ X, there is a minimal η(x) ∈ N

such that AT
η(x)f(x) ≥ f∗. Thus, we can cover X by intervals Ix := IT

η(x)x so that the average of f on those
intervals is no less than f∗. If we can make the lengths of those intervals uniform, i.e., find some n ∈ N such
that AT

nf ≥ f∗, then
0 =

∫
f dµ !=

∫
AT

nf dµ ≥
∫

f∗ dµ = f∗ > 0, (∗)

a contradiction, where the equality (!) follows from the following
Lemma 5.2 (Local-global Bridge). For each f ∈ L1(X,µ) and n ∈ N, we have

∫
f dµ =

∫
AT

nfdµ.

Proof. Since T is pmp, we have
∫
f dµ =

∫
f ◦T dµ by the Change of Variables formula, so

∫ ∑
i<n f ◦

T i = n
∫
f dµ, and hence the desired equality holds. □

This is too much to ask for in general; instead, we try to cover intervals ITn (x) for large enough n ≫ 0 by
the ‘good’ intervals of the form IT

η(y)(y) := Iy, on which we have the desired inequality AT
η(y)f ≥ f∗:

Lemma 5.3 (Tiling Lemma). Let η : X → N be an arbitrary measurable function. For any ε > 0,
there exists n ≫ 0 such that for each x ∈ X except on a measure-ε set, the interval ITn (x) can be tiled,
up to an ε-fraction, by intervals of the form Iy := IT

η(y)(y) for y ∈ X.

Proof. Choose L ≫ 0 such that B := {x ∈ X : η(x) > L} has measure at-most ε2/2, so for each n ∈ N,
the set Zn := {x ∈ X : AT

nχB(x) < ε/2} is co-ε since, by the Local-global Bridge, we have

ε2/2 ≥ µ(B) =
∫

χB dµ !=
∫

AT
nχB dµ ≥

∫
X\Zn

AT
nχB dµ ≥ ε

2µ(X \ Zn).

For each x ∈ Zn, we can tile ITn (x) from left to right, skipping ‘bad’ intervals (i.e., intervals Iy with
y ∈ B), which leaves out at-most an (ε/2 + L/n)-fraction of ITn (x) untiled by the Iy’s; choose n ≫ 0
such that L/n < ε/2. □
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With this in hand, we can start to attempt to replicate (∗). To this end, first choose M ≫ 0 so that X0 :=
{x ∈ X : f ≥ −M} is large; more specifically, so that

∫
Xc

0
(f − f∗)dµ ≤ f∗/2, and hence

∫
Xc

0
f dµ ≥ f∗/2.

Focus on f0 := f |X0
. Applying the Tiling Lemma to some ε > 0 to be chosen later, there is some n ≫ 0

and some Z ⊆ X0 of measure at-least µ(X0)− ε such that for each x ∈ Z, the interval ITn (x) is tiled by Iy’s
up to an ε-fraction. Since f0 ≥ f , we have AT

η(y)f0(y) ≥ f∗ too, so for all x ∈ Z,

AT
nf0(x) ≥ (1− ε)f∗ + ε(−M) = f∗ − ε(M + f∗) ≥ f∗/2

for sufficiently small ε > 0. We can now replicate (∗) to obtain

0 =
∫

f dµ =
∫
Xc

0

f dµ+
∫
Z

f0 dµ+
∫
X0\Z

f0 dµ ≥ f∗

2 +
∫
Z

AT
nf0 dµ+ µ(X0 \ Z)(−M) ≥ f∗ − εM > 0

for sufficiently small ε > 0, as desired. ■

Remark 5.4. If f ∈ L∗(X,µ) and η is bounded, we can tile every interval ITn (x) for sufficiently large n ≫ 0
by the Iy’s, up to an ε-fraction. This in turn simplifies the proof so that AT

nf ≥ f∗ for a uniform n ∈ N, so
that (∗) holds.

Exercise 5.5. What is the average value of a given digit 0 ≤ m ≤ 9, say m := 7, to occur in the decimal
representation of λ-a.e. x ∈ [0, 1]? That is, does ℓm(x) := limn

1
n |{i < n : xi = m}| exist, and what is it?

Hint: Consider the 10-ary Baker’s map b10 : [0, 1) → [0, 1) sending x 7→ 10x (mod 1), which is isomorphic
to the shift map on 10N.

Exercise 5.6 (Equidistribution Theorem). A sequence (xn)n in S1 is said to be equidistributed if for every
interval I ⊆ S1, we have limn

1
n | {xi}i<n ∩ I| = λ(I). Prove that if xn = nα for some irrational α ∈ S1, then

(xn)n is equidistributed. Hint: Don’t overthink it.

Exercise 5.7 (Law of Large Numbers). If you know statistics, prove it!

Exercise 5.8 (An ergodic theorem for non-ergodic actions). Intuitively, Birkhoff’s Pointwise Ergodic The-
orem states that ergodic transformations T : X → X stir up X so well that they spread any f ∈ L1(X,µ)
evenly on X, making it constant at

∫
f dµ; indeed, ‘f ◦ T∞ =

∫
f dµ’.

If T is not ergodic, then there is a non-trivial partition X = X1 ⊔X2 into T -invariant pieces. The best
that one can hope is at after ‘enough’ partitions X =

⊔
i Xi, T still spreads each fi := fχXi evenly on Xi.

Viewing f from the lens of these T -invariant pieces leads to the conditional expectation of f :

Definition 5.9. Let A ⊆ B(X) be a sub-σ-algebra of B(X). For each f ∈ L1(X,µ), there is a unique
(up to a µ-null set) A-measurable function fA such that

∫
A f dµ =

∫
A fA dµ for each A ∈ A, called the

conditional expectation of f w.r.t. A. We write E(f |A) for fA.

Remark 5.10. If P ⊆ B(X) is a countable partition ofX, then E(f |⟨P⟩σ) =
∑

P∈P

(
1

µ(P )
∫
P f dµ

)
χP .

Prove that for any (not necessarily ergodic) pmp transformation T : X → X and any f ∈ L1(X,µ), we have
limn A

T
nf =µ E(f |BT ), where BT ⊆ B(X) is the σ-algebra generated by all T -invariant Borel sets of X.

Hint: Same as the regular proof, only that f∗ : X → R is not necessarily constant, but just T -invariant.

Exercise 5.11 (Lp-ergodic theorem). Prove that for any pmp-transformation T : X → X and p ≥ 1, we
have AT

nf →Lp E(f |BT ) for all f ∈ Lp(X,µ).
Hint: If f is bounded, then we are done by the DCT. Otherwise, let fk →Lp f where each fk is bounded

and triangle-inequality your way through, using that ∥AT
nf∥Lp ≤ ∥f∥Lp (prove this too).

6. Lecture 6 (Ludovic Rivet): An overview of Szemerédi’s Theorem

This is the first in a series of lectures towards Furstenberg’s proof of Szemerédi’s Theorem.
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Further reading. Parts of [Tse22, Lectures 16 and 17], [Tao08, Lecture 10], and [EW10, Section 7.2-7.3].

Conjecture 6.1 (Erdős, Turán). Let A ⊆ N be a set such that
∑

a∈A 1/a → ∞. Then A contains arbitrarily
long arithmetic progressions, i.e., for any k ≥ 1, there exists n ∈ N and r ≥ 1 such that {n+ ir : i < k} ⊆ A.

Green and Tao proved, in 2004, that this is true when A is the set of prime numbers. Here, we give an
overview a much easier positive instance of this conjecture, namely, when the set A is ‘dense enough’.

Definition 6.2. The (Banach) density of a subset A ⊆ N is db(A) := limn
1
n |A ∩ {0, . . . , n− 1}|. Replacing

‘lim’ with ‘lim sup’, we get the upper (Banach) density db(A) of A.

Theorem 6.3 (Szemerédi; 1975). Conjecture 6.1 is true for those A ⊆ N such that db(A) > 0. In fact, for
any k ≥ 1, there exists n ∈ N such that db(

⋂
i<k(A− in)) > 0.

Exercise 6.4. Compute the upper and lower densities of the following sets A ⊆ N. Do they agree?

1. A := {n ∈ N : ∀m > 1(m2 ∤ n)}, the square-free integers.
2. A := prime numbers. Hint: Szemerédi vs. Green-Tao.
3. A := numbers with an odd number of digits.

Remark 6.5. Euler proved that the longest arithmetic progression in the set of squares have length 3, so
the density of squares is zero.

In 1977, Furstenberg [Fur77] gave an ergodic theoretic proof of Szemerédi’s Theorem. First, he established
a natural, but very hard, generalization of the Poincaré Recurrence Theorem, and showed that this result is
equivalent to Szemerédi’s Theorem via a correspondence principle.

Theorem 6.6 (Furstenberg’s Multiple Recurrence). Let (X,µ, T ) be a measure-preserving dynamical system.
For any positive-measure A ⊆ X and any k ≥ 1, there exists n ≥ 1 such that µ(

⋂
i<k T

−inA) > 0.

The case k = 1 is trivial, and the case k = 2 is exactly Poincaré’s Recurrence Theorem (Theorem 4.4).
We will prove this theorem in later lectures, but for now, we can prove it for two examples:

1. For the irrational rotation Rα : S1 → S1 (see Proposition 4.9), we can find n ∈ N such that Rn
α is

arbitrarily closed to the identity by solving the equation nα = 10p where p denotes the ‘precision’. By
choosing a good enough approximation, the sets Rin

α (A) for i < k intersect on a set of positive measure.
2. For the shift map T : 2N → 2N (see Proposition 4.12), note that µ(A ∩ T−nB) → µ(A)µ(B) since T is

mixing, so µ(
⋂

i<k T
−inA) → µ(A)k > 0.

Note that Theorem 6.6 holds for drastically different reasons in the two examples above; Rα preserves the
distance between points, while T mixes points a lot. This hints that the proof of the general case will require
some deep idea that connects all measure-preserving systems together. In fact, we will see that they are all
‘extensions’ of a combination of systems of these two types.

The link between Theorems 6.3 and 6.6 is via Furstenberg’s Correspondence Principle.

Theorem 6.7 (Furstenberg’s Correspondence Principle on N). For any A ⊆ N, there is a measure-preserving
dynamical system (X,µ, T ) and a set B ⊆ X such that for any k ≥ 1 and n1, . . . , nk−1 ∈ N, we have

db(A ∩ (A− n1) ∩ (A− n2) ∩ · · · ∩ (A− nk−1)) ≥ µ(B ∩ T−n1B ∩ T−n2B ∩ · · · ∩ T−nk−1B).

Combining Theorems 6.6 + 6.7, we obtain a proof of Theorem 6.3 by setting ni := in.

Proof of Theorem 6.7. By passing to a subsequence, we may assume that db(A) = limn |A∩{0, . . . , n− 1}|/n.
Consider the shift action T : 2N → 2N and let B := [1]. Viewing χA : N → 2 as an element of 2N, we have
that T jχA ∈ B iff j ∈ A. We will define a measure µ on X := 2N with the desired property.

For each n ∈ N, consider the weighted Dirac measure µn := 1
n

∑
j<n δT jχA

on X. By the Banach-Alaoglu
Theorem, the space of probability measures on X is weak∗-compact. Thus, after passing to a subsequence,
there is a weak∗-limit µn → µ so that (X,µ, T ) is a measure-preserving dynamical system and
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µ(B) = lim
n→∞

µn(B) = lim
n→∞

1
n

∑
j<n

δT jχA
(B) = lim

n→∞

1
n
|A ∩ {0, . . . , n− 1}| = db(A).

For each i < k, observe that j ∈ A− ni iff T j+niχA ∈ B, which occurs iff δT jχA
(T−njB) = 1, and thus

db(A ∩ (A− n1) ∩ · · · ∩ (A− nk−1)) ≥ lim inf
n→∞

|A ∩ (A− n1) ∩ · · · ∩ (A− nk−1) ∩ {0, . . . , n− 1}|
n

= lim inf
n→∞

1
n

∑
j<n

δT jχA
(B ∩ T−n1B ∩ · · · ∩ T−nk−1B)

= lim inf
n→∞

µn(B ∩ T−n1B ∩ · · · ∩ T−nk−1B)

= µ(B ∩ T−n1B ∩ · · · ∩ T−nk−1B),
as desired. ■

Exercise 6.8 (Furstenberg-Sárközy). Let A ⊆ N be a subset with positive upper density and let p ∈ Z[x]
be a polynomial with p(0) = 0. Using the recurrence theorem below, prove that there exists a, b ∈ A and
some n ≥ 1 such that x− y = p(n). Hint: Use the correspondence theorem.

Theorem 6.9 (Polynomial Recurrence; [EW10, Section 7.4]). Let (X,µ, T ) be a measure-preserving
dynamical system. For any positive-measure A ⊆ X, there exists n ≥ 1 such that µ(A ∩ T−p(n)A) > 0.

7. Lecture 7 (Ludovic Rivet): The Furstenberg-Zimmer Structure Theorem

TODO: please check back later...

Further reading. TODO.

Theorem 7.1 (Furstenberg-Zimmer Structure Theorem). Let (X,µ, T ) be a measure-preserving dynamical
system. There is an ordinal α and a sequence (Yβ)β≤α of measure-preserving dynamical systems such that

1. Y0 is the point system.
2. Yβ+1 → Yβ is a compact extension for each β < α.
3. X is a weak mixing extension of Yα.

Definition 7.2. An extension is a morphism of measure-preserving dynamical systems.

Example 7.3. X := (R/Z)2 with T (x, y) := (x + α, x + y) and Y := R/Z with S(x) := x + α; with
ϕ(x, y) := x.

If ϕ : X → Y is an extension, then L∞(Y ) ↪→ L∞(X).

Definition 7.4. A function f ∈ L2(X) is almost periodic if {Tnf : n ∈ Z} is compact in L2(X).
(X,µ, T ) is compact if all f ∈ L2(X) are almost periodic.

Example 7.5. (S1, Rα) is compact.

Theorem 7.6. Every compact system is isomorphic to a Kronecker system (compact group, Haar measure,
·α).

Definition 7.7. L2(X|Y ) is the set of f ∈ L2(X) such that ∥f∥L2(X|Y ) := E(|f |2|Y )1/2 ∈ L∞(Y ).

Definition 7.8. Let f1, . . . , fn ∈ L∞(X). The zonotope generated by fi is {
∑

i cifi : ci ∈ L∞(Y ), ∥ci∥ ≤ 1}.

Definition 7.9. A subset E ⊆ L2(X|Y ) is conditionally precompact if for all ε > 0, there is a zonotope Z
such that E ⊆ Nε(Z).

Definition 7.10. f ∈ L2(X|Y ) is conditionally almost periodic if {Tnf : n ∈ Z} is conditionally precompact.

Definition 7.11. X → Y is a compact extension if all f ∈ L∞(X|Y ) are conditionally almost periodic.
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